Watch Out Diabetes is a research-oriented digital health programme focused on developing novel solutions for women at risk of type 2 diabetes. Research shows that 10% of women develop gestational diabetes during pregnancy.
These women do receive exceptional care during pregnancy and 6-weeks after giving birth they are screened for type 2 diabetes. A significant proportion of women do not have type 2 diabetes at screening stage but due to receiving very little after care, as many as 7 out of 10 of these women go on to develop type 2 diabetes within 5 years of giving birth.
Type 2 diabetes is a life-long condition but its onset could be delayed or prevented with lifestyle interventions, weight loss and good cardiovascular health. Watch Out Diabetes is plugging this hole in health delivery by providing advice and support to women outside hospitals and GPs centres through a targeted, digital diabetes prevention programme designed specifically for women. Watch Out Diabetes has launched a beta version of an app for testing.
The S2DS team focused on the generation of a weekly food shopping lists and the smart food recommendation engine.
Approach
Over a five-week period, a team of four PhD scientists implemented the project and used machine learning to understand patients’ preferences. The allowed calories requirement and other information were extracted from National Institute of Health and Care Excellence (NICE) and American Diabetes Association (ADA) guidelines using NLP.
Moreover, the engine encompasses a combination of a learning and predictive process which register woman's habits, previous choices and food preferences. Consequently, the system automatically adapts the recommendations and predicts a very personalised recipe and shopping list.
By using basic health information, age, activity level, weight, etc., supplied by the user, the app determines the user’s nutritional requirements and creates recommendations based on their individual user preferences. In doing so, the app will generate a list of suitable meals that a user can choose from. The user can then select a list of meals, and using the list of meals selected, the app pulls information from its database and provides a list of recipes. By deconstructing those recipes, the app is able to compile a shopping list and match it to the nearby supermarket stores.
A user can create this shopping list for multiple meals for a week or two depending on shopping habits and preferences. The user makes their choices from the recipes which are recorded and stored, the app learns from those preferences and makes future recommendations adapted to that user.
Voluptas omnis debitis fugiat id velit doloribus tenetur. Totam vel vitae possimus rerum. Ea unde aut ut sit quia adipisci. Dolores ipsum eum dignissimos. Quod perferendis dolores quia. Et est consequatur quia harum quia voluptatibus iusto au
The Outcome
Testing of the app with 60 independent users of different ages, activity level, BMI's, and food preferences, showed that the recipe recommendation engine returned very accurate results. The Recommendation Engine (RE) is currently being optimised for additional factors such as the phase of the menstrual cycle and additional nutritional requirements and will be tested once again with a larger cohort. The development process will be summarised in a paper submitted to the Computer Methods and Programs in Biomedicine.
Contact us today to get in touch and discover what AI can do for your business.